

Technicon Approach to Energy Management

Power Quality & Management

Typical Power Issues facing Industrial & Commercial Users Today

- Power Demand
- Power Quality
- Power Usage
- Power Factor

How do we address each of these issues?

Power Demand

Objective - Reduce Power Demand & Eliminate or minimize utility demand charges

Solutions:

Soft Starters & Reduced Voltage Starters -

Minimize high in-rush currents during motor startup

Variable Frequency Drives (VFD's) -

Minimize high-in-rush currents by controlling motor Acceleration/Deceleration & RPM

Power Quality

Objective - Reduce inefficient & harmful harmonic currents by reducing THD

Harmonic currents can cause:

Poor power factor Excessive power loss & Efficiency Transformer & Distribution equipment overheating Premature equipment failure Sensitive equipment failure Random Circuit breaker trips Heavy fines from power company due to degradation of power guality

Solutions

Harmonic Filters & Guards

Active & Passive Harmonic Filters

Passive

Reduce harmonic frequencies (multiples of fundamental frequency)

Active (in addition to Passive filters)

Present near unity Power Factor to line Less than or equal to 5% THD Reacts to changes in load within 50us

VFD's with active "front-end" - (in addition to inherent energy saving)

Present near unity Displacement Power Factor

Regenerate load power back into utility line

Monitor & protects motors and motor loads

Power Factor

Objective: Correct power factor to near unity (1.0) Eliminate large surcharges from utilities

Solutions:

Power Factor Correction equipment PFC Capacitors

Manual or Automatic Bank Monitoring & Switching

Manual - Manually installed capacitors

Correct Lagging Power Factor

Automatic

Automatic monitor & correct Power Factor by capacitor bank switching Display current power factor & other data

Energy Savings

Objective: Lower overall power usage & monthly utility costs

Solutions:

Variable Frequency Drives (VFD's) - Control rotating loads

Typical types of loads

Variable Torque - Centrifugal pumps & fans Savings <u>exponentially proportional</u> to reduction in (RPM)

Example: 10% reduction in RPM (Flow/CFM) = 25% reduction in energy usage

20% reduction in RPM (Flow/CFM) = 50% reduction in energy usage

Constant Torque - Positive Displacement Pumps - Conveyors

Savings directly proportional to speed reduction

Example: 10% reduction in RPM (Flow/FPM) = 10% reduction in energy usage 20% reduction in RPM (Flow/FPM) = 20% reduction in energy usage

Conclusion:

VFD's can address all of the above power related Issues

- Reduce Energy Usage
- Reduce or Eliminate Energy Demand
- Reduce Total Harmonic Distortion
- Present Unity Power Factor (1.0) to power line

Please allow us to discuss your specific power quality needs and visit our website: www.techniconiec.com